Serological Monitoring of Pathogen Occurrence

Floyd Frost
Gunther Craun
Twila Kunde

Pathogen Detection in Drinking Water

- Detection of a pathogen in water (e.g. Cryptosporidium or Giardia) is commonly used by water utilities to monitor source and treated water quality.
- This was the purpose of the Information Collection Rule (ICR).

The ICR – successes and failures

- The ICR documented widespread occurrence of *Giardia* cysts and *Cryptosporidium* oocysts in raw and treated drinking water.
- The problem is 'So what?' How has this expensive set of data been used to improve water treatment, water quality or public health?

What went wrong?

- Pathogen detection is unreliable even in a laboratory setting.
- Detection of something that looks like a pathogen does not mean that people are at risk of infection or disease from ingesting that organism.
- Pathogen detection is expensive

What is the alternative?

- The immune system constantly monitors even minor infections by organisms.
- An immune response will occur even when there is no illness.
- Pathogens in the body will come and go but an immune response is detectable after the infection has been cleared.

Limitations

- An assay is needed that can detect immune responses to the pathogen of interest and not general responses to large classes of organisms.
- For some viruses, general assays may be useful because there are few antigens and less of a chance of misclassification.

Limitations

- For parasites, the organism has a large number of potential antigens.
- Many of these antigens are shared with other organisms.
- Unless one selects antigens that are specific for that pathogen, misclassification can be a major problem.

Detectable NHANES Responses

• Site (n)	+17-kDa	+27-kDA
• Site (n)	+17-kDa	+27-kD

Paired City Studies

• Site	15/17-	27-
• Albuquerque (GW)	36.3%	50.8%
 Las Vegas (SW) 	49.8%	55.2%
• MW 1 (GW)	25.6%	36.0%
• MW 2 (SW)	53.9%	38.8%
• MW 3 (GW)	52.4%	72.5%
• MW 4 (SW)	72.3%	82.6%

International Studies

• Site	15/17-	27-kDa
• Russia (sw)	67.6%	88.9%
• Italy (sw)	84.0%	69.3%
• Sydney (sw-au)	56.7%	60.6%
• Melbourne(sw-au)	61.5%	65.4%
• Payment (sw-ca)	81.8%	83.1%
• BC (sw-ca)	30.4%	35.6%

Riverbank Filtration

Compared to well water users, users of riverbank filtered water in Hungary more frequently had responses to *Cryptosporidium* antigens.

•But they less frequently had responses than users of surface water that was conventionally filtered.

Serological Response >30% of Positive Control – 15/17-kDa

 Water source 	pos/N	p=
 Riverbank 	16/50	0.02
 Surface filtered 	25/54	
 Deep wells 	10/49	0.006

Serological Response >30% of Positive Control – 15/17-kDa

 Source 	Pos/N	p-value
 Riverbank 	9/50	0.02
 Surface filtered 	20/54	
 Deep wells 	6/49	0.006

So what is next?

- We are conducting one riverbank filtration study in Nebraska under the STAR grant
- We need to replicate the riverbank filtration studies in North America
- We would like to do more international studies – e.g. Europe